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ABSTRACT

This paper presents a numerical study of the time evolution of plane, cosmic-ray

tnodified shocks with magnetic field parallel to the shock normal, based on the diffusive

sht,('k accclera.tion formalism and including the effects from the finite propagation speed

and energy of Alfv6n waves responsible for controlling the transport of the cosmic-rays.

Thr, ._inmlations discussed are based on a three-fluid model for the dynamics, but a more

c, mlplct.e formalis,n is laid out for future work. The results of the simulations confirm

earlier, steady state analyses that found these Alfv6n transport effects to be potentially

important when the upstream Alfv_n speed and the gas sound speed are comparable; i.e

when the plasma and magnetic pressures are similar. It is also clear, however, that the

impact, of Alfv_n transport effects, which tend to slow shock evolution and reduce the

ti,ne asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain

details in the transport models. Both cosmic-ray advection tied to streaming Alfv_n waves

and dissipation of wave energy are important to include in the models. Further, Alfv_n

transport properties on both sides of the shock are also influential.

._..,bje.ct headings: acceleration of particles - cosmic-rays - hydrodynamics - shock waves
AlfvSn waves



1. INTRODUCTION

Diffusive acceleration associated with shocks is now the most widely discussed mecha-

nism for acceleration to high energies of charged particles (hereafter, cosmic-rays or CR)

in a wide range of astrophysical settings. At least in idealized treatments the mechanism

aplmrently can be both efficient at capturing gas kinetic energy and robust in certain

imlmrtant chara.cteristics, such as the momentum distribution of the accelerated charged

1)m-title's (see, for example, the reviews by Blandford & Eichler 1987, Jones & Ellison 1991).

Lc,_k(:d at closely, however, the physics is complex and generally nonlinear. Furthermore,

although much of our basic understanding of diffusive acceleration has been derived from

st_-ady state analyses (e.g. Drury and V31k 1981; V6Ik, Drury & McKenzie 1984 [here-

aft.er VDM]), it has become increasingly clear that time dependent studies are necessary

in many circumstances (e.g., Jones and Kang 1992a). This comes about for a variety of

reasons including the likelihood that many shocks do not have time to reach a steady state

or simply cannot develop truly steady properties (e.g., Jones and Kang 1992b, 1993).

The diffusive acceleration process depends upon the existence of rapid pitch angle

r_'(listribution by way of scattering both upstream and downstream of the shock. This

scattering is generally assumed to be primarily resonant scattering with Alfv6n waves,

since those waves can be directly generated by the CR, and, being noncompressive, are

weakly damped in the background plasma, so long as "the plasma is fully ionized and the gas

sound speed, cs, is not exceeded by the Alfvdn speed, VA, (Chin & Wentzel 1972, Skilling

1975b, Ferri6re et al. 1988). In the strong scattering limit the CR will become nearly

isotropized with respect to the rest frame of the Alfv6n waves. When the CR are not quite

is¢_tropic, so that if they are streaming in that frame, the CR will amplify these same Alfv6n

wart's by the resonant scattering process. For shocks wave growth is probably strongest in

th¢, shock precursor and, sometimes, immediately behind the shock jump, where gradients

in the CIt distributic_a maintain some streaming. The waves generated in this fashion

iv_ tllrll will transfi._r momentum, energy and, through dissipation, entropy to the plasma.

Thr' basics of those interactions are welI known, at least through quasi-linear theory (e.g.

• Skilli:tg 1975a,b,c, Bell 1978, Achterberg i982, McI(enzie and V61k 1982, Schlickeiser

1992). The possibility that the waves may themselves be dynamically important also h_s

been recognized for some time (e.g., McKenzie and Vhlk 1982, Achterberg 1982, VDM).

There are a number of ways that Alfv6n waves can directly influence the evolution

_f a CR mediated shock. First is the already mentioned likelihood that at least some of

th(. energy taken from the CR to generate Alfv6n waves will be locally dissipated within

th(, gas. Not only does that directly remove energy from the CR and transfer it back

r,_ the gas, but in addition it alters the shock by changing the properties of the gas in

fh_. shock transition. In particular, the gas is hotter entering the shock, so the effective

NIach number of the shock is diminished, thereby reducing the expected efficiency of the

CFI acceleration process (Drury & V61k 1981_ Achterberg, Blandford & Periwal 1984).

Advection of the scattering centers with respect to the gas is also very important, since

it alters the characteristic time that particles spend on either side of the shock and the
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1)a,ti(,lespeed change associated with a shock crossing if the drift speed changes across the

sl_(u:k transition. That changes the mean rate at which particles are accelerated. If the

wave energy and pressures are large enough they can have direct dynamical impact on the

gas flow and the associated CR acceleration. All these effects can be conveniently collected

together under a heading, "Alfv_n cosmic-ray transport". VDM used a two-fluid model to

estimate the steady state acceleration efficiency of shocks including Alfv4n transport terms.

Their calculations showed that Alfv_n transport effects tend to produce a significantly

hotter downstream gas state and a reduced CR aecelerati0n efficiency if the upstream

Alfvbn speed i s cgmparable to the upstream gas sound speed. Such an upstream condition

is quite plausible in the interstellar medium, for example (e.g., Spitzer 1978). This could be

important, both in terms of the amount of energy that might be expected to be transferred

I(J CR and to the predicted state of the postshock gas. Calculations of steady, CR modified

sh,,cks not including Alfv&a transport have found such high acceleration efficiencies that

the CR pressure can completely smooth out the transition for moderate to strong shocks;

thus, leading to rather cool gas downstream (e.g., Drury and Vblk 1981, Jones & Kang 1990

[hereafter JK90]). The VDM models with Alfv_n transport reduced the efficiency enough

when Cs '-_ v A that the gas subshock was restored, except at verb" large Mach numbers.

However, despite this suggestion that Alfv_n transport may be an important effect in some

circumstances, the presence of the Alfvdn waves beyond their scattering role has been more

(fft(.n ignored even in steady st.ate treatments of diffusive acceleration. To date only the

r(_l(' ()f ('ntropy pr()duction in the gas through wave dissipation has been modeled in any

n(mlinear, time dependent treatments (Markiewicz e/ al 1990, Dorfi 1991). This neglect

has been due partly to the fact that nonlinear diffusive shock acceleration theory is already

an intricate problem and because some important details of Alfvdn transport, such as the

damping of the waves are not very well understood. But, it is important to understand

more fully how significant the consequences of Alfv4n transport may be and how generally

and accurately it must be included for accurate assessment of CR acceleration in both

steady and unsteady shocks.

My goal in the present paper is to explore qualitatively some of the issues associated

witlt a more complete treatment of Alfvdn transport in CR shocks. The treatment is still

_;i_nplified in some important respects, but I have examined some new issues and have

ilMuded for the first time in a nonlinear, time dependent study of plane CR mediated

shocks both the entropy producing effects of wave dissipation and effects due to the Alfvdn

wave advection of the CR relative to the gas. I also begin examination of the direct

consequences of including the pressure and energy of the Alfvdn waves in the formalism.

In §2 I outline some important features of the theory and discuss a "three-fluid" model

that I have applied as a first step to time dependent studies. The characteristics of some

example model calculations are specified in §3; results from those calculations are described

in !i4, while !:_5provides a brief summary of conclusions.

2. BASIC RELATIONS



The fluid approach to modeling CR transport depends upon the standard compressible

fl, m, conservation laws for the underlying plasma (gas) augmented by terms representing

the back reaction of the CR and the Alfv6n wave field and by transport equations for the

CR and the waves. In the present study I will investigate only plane shock structures of at

least moderate strength whose normals are parallel to the mean magnetic field and which

are propagating into a warm or hot plasma, so that sonic mode (hydrodynamic) shocks

arc present. This is a significant restriction, of course, but a necessary beginning in sorting

through some very complex phenomena. However, I want to focus on the interaction of

Alfvdn waves with tile plasma and the CR. Thus, the Euler's equation for the plasma must

include the pondermotive force fl'om the Alfv6n waves. As shown by Achterberg (1982),

fi,r example, this gives

_ 1
dff l_(pa + Pc + _Eu,), (2.1),
dt p

where _ is the velocity of the plasma, Ew = 2Pw = (6B)2/(4 rr) is the energy density per

_mit volume in Alfv6n waves and 6B represents the wave-number integrated magnetic field

fluctuation, while Pg, Pc and Pw are the pressures of the gas, the CR and the waves,

r('specdvely. The Lagrangian time derivative incorporating plasma motion is d/dt =

O/Ot + _. V. The back reaction of CR on the gas, represented through -VPc, is explicitly

and automatically included through the pondermotive force, since resonant scattering of

CR off the Alfv6n waves directly transfers momentum to the gas. The equation for energy

conservation in the gas under these circumstances is

L-S
= _!9. {(pj + Pc+ + + P )9. + --- (2.2)

dt p p P

Here, e is the sum of gas thermal and kinetic energy per unit mass. The terms L

and S represent nonadiabatic heating from dissipation of the Alfv6n waves and energy lost

r(_ CR through the injection of gas particles at low energy into the CR spectrum. I will

assume a standard equation of state for the gas, Pg = ('/g - 1)Eg, with 7g = 8/3 and

i,,._n(_re radiative cooling or thermal conduction. The usual mass conservation equation for

the gas also applies:

d_ = _ pV. _. (2.3)
dt

Inertia in the CR component is neglected, since it is commonly supposed that the number

of CR ions is very small compared to the number of "gas" ions. As shown, for example,

by Skilling (1975a.) the transport equation for an almost isotropic CR particle distribution

in the limit of strong scattering is a diffusion-advection equation,

(!fdt 31 _z.(g+i_w)p__p +V.(ngf)-(1 + 30lnp )gw'Vf+Q' (2.4)

where f(.r,p,t) is the numbe," density of particles in phase space. The source term Q

r('prcsents particle injection fl.om the gas and is related to the term S in equation [212] (see
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equations [2.8] and [2.9] in Kant & Jones1991). In addition, the mean CR streaming or
"'Alfv6n advection" velocity relative to the gas, ffw(p), is

ffw=__ (1-/_2)v +_u_

hwU+O - U-ovA h = hwEWk+ ° - Ewk_ o
V+o + U-o Ewk+o + Ewk-o vail' (2.5)

where v A - B/4_-'fi is the Alfven speed, and v = pc/_/p 2 + m2c 2 is the speed of the

._cat tered particle.

The mean rates for resonant scattering, u+, between CR particles of momentum along

the magnetic field, pp = _. fi = _tom/k, and Alfv6n waves of wave number, k, traveling in

th(, two directions along the field +fi = +BIB are

rr f'lomv kEwk+ rr v kEwk+= = (2.6)
4 p E B 4 r L E B

520 is the nonrelativistic cyclotron frequency, r L is the particle Larmour radius and E B =

B2/(S:r). Furthermore, Ew+ = f Ewk+dk is the total energy density of waves propagating

in the same two directions. The angular brackets in equation [2.5] represent an average

over it. The factor hw and the subscript o in the last two expressions for ffw have been

introduced to allow us to represent the pitch angle average in terms of the scattering rate

_':l:o from Alfv_n waves at the shortest wavelength resonant at a given momentum; namely

t',_ _2om/p.

If the ratio of Ewk+/Ewk_ = u+/u_ is independent of k or if one of Ewk + is dominant

at the approwiate wave numbers, hw = 1 and in equation [2.4] Olnuw/Olnp = 0, which

h_ads to considerable simplifications in some of the following relations. In evaluating the

diffusion coefficient, _, and eventually the growth rate of Alfvdn waves (equation [2.10]) it

is convenient to adopt the approximation that the scattering is dominated by U+o (e.g.,

Skilling 1975c, Lee 1983). As argued by Lee (1983) this choice is probably adequate and

c(msistent with needed corrections to quasilinear theory under most circumstances, so long

as EwL. does not vary dramatically in the range of wavenumbers resonant with the bulk

(_f tlte CR at a given momentum. It does capture the important physical point that the

.w_tr_,ring rate should scale inversely with the intensity of Alfv_n waves. Then the CR

diflhsion coefficient parallel to the magnetic field, n = _(p), is given by

v 2 1

n(P) _ 3 V+o + V-o' (2.7)

In equation [2.5] the factor hw ,_ 1 in this approximation, as well. This approximation

5w _,+ will be used for the remainder of our discussion, and the extra subscript o on the

scattering rates will be implicit. For fllrther details about the derivation of equations [2.4

- 2.7] the reader is referred to Skilling (1975a).
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The flu, terms in equation [2.4] come about because the scattering by Alfv_n waves

t.(,n(ls to isotropize the CR ,:istribution in the wave frame rather than the gas frame.

When waves locally propagate in both directions, ffw represents an effective "compromise"

drift frame for the CR and wave energies, which corresponds, in fact, to the motion of

the "center of momentum" of the waves. The ffw terms directly alter the rate of CR

acceleration by changing the speed at which CR are advected into and out of a shock

structure and thus the rate at which the gas does work on the CR in a shock precursor. In

passing I note that it is also convenient to term the condition v+ = v_ (Uw = 0; v A # O)

an "isotropic" Alfvdn wave field.

Solution of the full CR diffusion-advection equation [2.4] is numerically expensive

and depends upon a number of physical, momentum dependent details that are not well

un(l(,rstood (see, for example, Kang _ Jones 1991, Duffy 1992). I will defer that more

challenging problem to a subsequent paper. For an initial study of the most elementary

Alfv6n transport issues it is appropriate to use the simpler two-fluid approach instead,

since it lends itself more easily to isolation of general dynamical issues. In that model

equation [2.4] is multiplied by the kinetic energy of particles and integrated with respect

to momentum. The resulting moments of f provide an energy conservation equation for

th(- CR including finite Alfvdn transport terms (cf. Achterberg 1982),

dE___£c= _TcEc(_.g)+ _.((_)_Ec-ffw_cEc)+ ffw. VPc+ S , (2.8)
dt

where Ec and 7c = 1 + Pc/Ec are the CR energy density and the ratio of specific heats,

respectively, (_) is an energy weighted, mean diffusion coefficient (e.g., Kang, Jones & Ryu

1992), and for ffw I have set hw = 1. The information absorbed into closure parameters in

equation [2.8] prevent us from learning anything about momentum dependent evolution in

a self-consistent way, but previous studies with uw = 0 (e.g., Kang and Jones 1991) have

shown that within changes imposed from unmodeled variations in the values of 7c and (_)

tlle resulting dynamical evoh:don is consistent with that obtained from the full diffusion-

advection equation. Other co:lcerns that have been raised about two-fluid models have to

do with the fact that equation [2.8] does not explicitly keep track of the totM number of CR

t)articles (Jones & Ellison 1991), and that for very strong shocks where one expects f(p)

to become fairly flat so that 7c ---44/3, escape of the highest energy CR may prevent a true

equilibrium from developing, even though one can find an equilibrium two-fluid solution.

On the other hand, two-fluid models are purely dynamicM models. Since the number of CR

particles is expected to be relatively small, the only properties of any individual CR particle

that matter are the energy and momentum that it carries. Only if any escaping particles

1)egin to carry away significant fractions of Ec can they begin to alter the dynamics.

That would require that 3'c _ 4/3. But, as long as there is a significant admixture of
nonrdativistic CR this will not be the case. Our own time dependent calculations with

the fi,ll diffusion-advection equation (e.g. , Kang& Jones 1991) show that when the initial

CR distribution is such that "_c > 4/3, dynamical equilibrium is approached even though

,ll,' CR particle distrilmtion .f(p) may not reach an equilibrium, and before a sufficient

_mml)(,r of particles are accelerated to such high energy that they might begin to alter

tlm _x¢'rall encrgetics or shock structure. Our purpose here is to explore the stages up
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to dynamical equilibrium not to demonstrate the existence of a true particle equilibrium.

Thus, those types of issues are not likely to influence results in the present paper. On

longer timescales other issues such as the development of instabilities or the breakdown of

planar geometry would seem to be at least as important (e.g. Jones & Kang 1992b),

In adding Uw to the two-fluid model I have introduced another degree of freedom with

its ,>wn uncertainties, which clearly ,leeds to be examined with extensions of the methods

us,,d ill N.ang ,.%Jones (1991), before one can truly understand the quantitative nature of

Alfv(_,u transport. Remembering that our goals here are qualitative, and that the essential

basic physics of the Alfv6n transport is in equation [2.8], we expect to use these two-fluid

results [2.8] as a standard for comparison and to provide direction for the more complete

calculations, presently under development.

To close the system o.: equations we have the energy transport equation for the Alfv6n

wave fietds in the WKB approximation according to Dewar (1970) (see also, Achterberg

i0S2).

dEu:k+ . _
dt =-a+Eu, k + z/ _ (fiVAEwk±) 3Ewk+_'ff_ -- Lk± , (2.9)

where -o':i:is the energy growth rate of waves due to their resonant scattering with CR,

and L/: is the dissipation rate for wave energy in the background plasma. Since the scales

,,f interest greatly exceed the Larmour radii of thermal particles and the thickness of the

subshock, other sources of wave growth at the appropriate wave numbers ought to be

negligible within the shock (e.g. , Quest 1988). Other, nonlinear interactions such as

wave-wave scatterings that lead indirectly through "nonlinear Landau damping" to wave

dissipation can be incorporated into L k (e.g. , VDM). For a+ I adopt the expression

derived by Skilling (1975c) accounting for CR streaming in response to gradients in f and

scattering by Alfvdn waves propagating both parallel and antiparallel to fi; namely,

7r'2m_o p:' [ _-_]-a± = 3 E B vA u+ + u_ zF v2fi" _f + 2VAV(U_) (p ) . (2.10)

This shows the well-known feature that a CR density gradient stimulates growth of Alfv6n

waves propagating in the direction opposite to the gradient, but damps waves propagating

into the gradient. Thus, in the precursor of a CR modified shock, the growing waves

are propagating upstream. Steady CR modified plane shocks are uniform downstream of

the shock transition, so no CR-generated wave growth or damping would result in the

l_ostshock flow. But, shocks evolving from a condition in which the CR pressure is smaller

than the time asymptotic value will tend to generate CR distributions peaked around

,h(' shock. In that case it seems likely that amplification of Alfv6n waves propagating
(I,m'nstream from the shock will result behind the transition.

Derivation of equation [2.8] was made much simpler by setting hw = 1. This choice

is consistent either with one of Ewe.+ being dominant or with both wave fields having the

same dependence on wavenumber. Comparable simplifications in the momentum average

,,f (,(l,mtion [2.9] are available under similar conditions. Using equations [2.9, 2.10] we can

1,('gin t(_ lo(,k at th(, plausibility (_f these situations. From equation [2.10] it is apparent



that when the incident wave field is small, streaming CIR. will tend to generate a field

(l(mlinated by one of Ewk:t :. This was the rationale for Achterberg (1982) and McKenzie

& VSlk (1982) to use +v A for uw. If, on the other hand, the incident wave field initially is

i._otropic, perhaps through nonlinear wave-wave equilibration, then according to equations

[2.9 & 2.10] subsequent changes in F,wk+ will have similar k dependence, except possibly

through LX:+. The specific Alfvtn transport models described in §3 are all consistent

with one or the other of these choices. In any case, our immediate goals are once again

qualitative, and more complete calculations are underway to check the importance of such

simplifications.

We can obtain total Alfvdn wave energy conservation equations for the two directions,

E,,,+, by integrating equation [2.9] over wave number. If we again make the simplifying

_,._smnption that Ew/¢+ and Eu, k_ have the same dependence on wave number, the ratio

r_±/(_+ + u_ ) can be taken outside the integral. This leads to the equation

dew:}: T u+ 2V2A u+(u:t: ) 3
-- VAfi'_Pc - c2 ('TcEc) T V'(fiVAEw=l:) -- _Ew+V'ff - L±,

dt u+ + u_ u+ + u_
(2.1i)

where (u:t:) is averaged over wave number. The total Alfvfin wave energy conservation

equation is obtained by adding together both forms of equation [2.11] and using equation

[2.5] to eliminate u-j- giving

d E_j _

dt -gw" VPc- V'(ffwEw)- 3-EwV'_- L'2
(2.12)

where Eu, = Ew+ + Ew-, and L = L+ + L_. The second order term in (VA/C) has been

dropped. Of course, if one of Ewl:+ dominates, equation [2.12] follows directly. Together

with equations [2.1 - 2.3, 2.8] we now have a kind of three-fluid model for the plasma-CR-

Alfv_n wave system. Equation [2.12] is the same as that expressed by Achterberg (1982)

or McI,:enzie and V61k (1982), except I have replaced v A by Uw. In the models described

below I will evaluate some consequences of using uw instead of v A.

The three separate energy conservation equations [2.2, 2.8, 2.12] combine to give the

ucccssary relation for total energy conservation (e.g., Achterberg 1982, McKenzie and V61k

1982)

[ 3. ]+ + + + Pg)+ + - + + = o,
(2.13)

which explicitly displays the various contributions to the total energy flux in the system.

It is clear, for example, how the total energy is influenced by the fact that CR and wave

('n(:rgy are advected differently from the gas energy.

3. SIMPLE MODELS

The equations of §2, supplemented by models for the microphysics of wave energy

,Iissilmti_m and CR injection, should allow one to solve for the evolution of CR modified
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shocks including the evolution of the integrated AlfvSn wavefields. Unfortunately, those
,nicrophysics models are not well established and even though they are idealized these

equations are still very complicated and nonlinear. Thus, the present study will be

restricted to some sets of still simplified models in order to anticipate better on what

may be important to subsequent, more complete studies. We are now primarily concerned

with evaluating the importance and properties of different aspects of Alfv_n transport.

Although I will allow the Alfv_n speed to be significant with respect to other velocities in

the problem, I will, as mentioned earlier, treat only parallel, sonic mode shocks, deferring

the full, MHD, problem to later publications.

In the work to be described below the dynamical equations [2.1-2.3, 2.8, 2.12] have

been solved numerically with an explicit, conservative hydrodynamics code based on the

Piecewise Parabolic Method (Colella and Woodward 1984), augmented to include the

AlfvSn wave energy, plus a routine based on the implicit Crank-Nicholson scheme to solve

tl_,' Cl-I energy equation. The techniques are the same as those described in JK90 and

I'_ng, .Jones and Ryu (1992), except for the additional Alfvdn transport terms. Tests of

the code have been discussed previously (e.g., JK90, Kang and Jones 1991, Kang, Jones

and Ryu 1992). Some additional tests for the present extensions will be described in §4a
below.

a) Initial Conditions

For this study I have simulated the evolution of 1D plane "shock tubes". The computa-

ticmal domain initially contains uuiform left, (1), and right, (r), states, which in the absence

_f CR would generate steady, right facing gas shocks, moving relative to the upstream gas

_t speed, us = 1.5. Continuous boundaries exist on both ends of the grid. Initial gas

state variables satisfy jump conditions for shocks of preselected sonic (gas) Mach numbers,

:_,i = us/Csr = 3, 10 or 30, where Csv is the upstream gas sound speed. For all the models

discussed I assume upstream (right) states with Pr = 1.0 and Ur = -0.5, resulting in a

nominal shock speed with respect to the "observer", Use = 1.0. The initial Pc is uniform

and everywhere equal to the upstream Pgr, so that N "- Pcr/(Pcr + Pgr) = 1/2. The value

(,f Pq,. depends upon the selected sonic Mach number. I will not discuss models providing

fi.esh injection of Iow energy CR; thus 5' = Q = 0. I have actually carried through a

tmmber of simulations in this study using an injection model described before (Kang &

.](,ncs 1990, .]I,:90). However, since that particular feature does not appear to add any

additional behaviors with regard to Alfv6n transport questions, but increases the number

,_f parameters, it seems appropriate to omit it for the time being. I consider here only

models with constant 7e. This should again be adequate for our present purposes. (See

Achterberg e_ al 1984, Markiewicz et al 1990, Jones & Kang 1992b, Kang & Drury 1992,

for discussions of the significance of that assumption.) For all except one model (Model

1 in Table 1) used to compare with results given in VDM, I have used 7c = 1.4, which

is at)i)roximately the value that would result from a power-lave momentum distribution of

the CR with index q = 4.2 (Achterberg, et aI 1984). This is about the indicated form for

gal_cric CIR. Again. I have carried out other simulations with stiffer CR equations of state.

.N(_ illtp(wtant qualitative differmlces fl'om those discussed were apparent.
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The Alfv_n speed is determined by first defining its upstream value, VAt , in terms of

the dimensionless parameter,/3, given by

_ __ [Cs,'] 2 __ _[gPgr (3.1)
[VArJ 2EB

Downstream and at all points after the simulations begin v A = fl-1/2Csr_r/p, reflecting

the constancy and uniformity of the large scale magnetic field. The Alfv6n Mach number

of the shocks is M A = 31/2M. In order to avoid a variety of complications that can

develop whenever/_ < 1, I will restrict the discussion to cases with _ >_ 1. I set the initial

Ul)stream wave energy density Ewr = &EB = &t3prC2r/2, where a <: 1 is a constant. The

w;_ve energy downstream of the initial shock discontinuity satisfies the relation (Ew/p 3/2)

= c(mstant; i.e., the waves are assumed to have been adiabatically compressed through

rl,,*initial jump (see equation[2.12]).

All the simulations discussed are based on a constant diffusion coefficient, (_:) = 0.35.

(For simplicity I will hereafter omit the brackets around t_.) This gives characteristic

diffusion length and time scales, x d = n/Us = 0.233, and t d = _/U2s = 0.156, respectively.

As pointed out previously (e.g., Drury & Falle 1986), the width of the CR-generated shock

precursor and the time scale for its evolution can be directly related to these scales. In

fact, provided the dissipation rate, L, has an appropriate form such as that in equation

[3.2] below, it is easy to see that the system of equations [2.1 - 2.3, 2.8, 2.12] can be

written in dimensionless form by normalizing the length and time scales by x d and td, the

velocities by Us or Csr, densities by Pr and pressures and energy densities by prc2sr. The

only necessary free parameters are then the dimensionless ratios N, M, fl and a. Thus,

wc should concentrate on these dimensionless variables. Even if _: is not constant, one

can formally write the dynamic equations in this way at the cost of burying an implicit

dependence between _ and some other variables. Using a constant _ simplifies discussion

and comparison of these models, since any differences in timescales of shock evolution are

a direct consequence of Alfv_n transport, rather than in the nominal diffusion timescale.

By assuming a constant _ for the models discussed I ignore the dependence between

h and Ew indicated through equation [2.7]. This simplification overlooks details in the
structures and time histories of the shocks similar to those seen in earlier simulations

inw)lving density dependent s:, for example (JK90). However, the fact that the equations

b('ing solved can be written in a form not explicitly revealing _ suggests that in the

normalized units above the general properties of the shock evolution should not depend

significantly upon this decision. This outcome was previously demonstrated for the simpler

cases without Alfvdn transport (Drury and Falle 1986, JK90). To test this idea with

AlfvSn transport incorporated I did carry out one set of three shock simulations for the

case .r_,/ = 10, ,9 = 1 and c_ = 0.5, comparing the solutions with t¢ = constant, _ 0¢ 1/p

and _: <x 1/Ew. (Otherwise these models were identical to Model 3 in Table 1). The

detailed shock profiles and rates of evolution differed from each other in ways that one

xx'(,dd anticipate (see, e.g., .JK90). But the differences at intermediate times were relatively

ildnc_r and the tim_' asymptotic post-shock states agreed exactly in all three cases to xvithin

tc_h'raltc('s OXl)e('tcd from mm]erical convergence properties of the code (see §4a). Thus, I
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believethe simplifications madeby letting x = constant for the models described have not

reduced the reliability of the conclusions reached. The behavior of the three models just

described will be published elsewhere (Jones 1993).

b) Wave Dissipation and Streaming

To completely specify these models we still need to define properties for L and Uw.

Although the microphysical details needed to do this in fully consistent ways are not well

understood (see, e.g. VDM, Eichler 1985, Collins 1992 for some of the issues), my present

purposes are exploratory, so that it is perhaps more useful to consider a simple range of

possibilities. Thus, for the Alfv6n wave dissipation rate, L, I will consider two idealized

cases. For the first, I adopt the assumption by several previous authors (e.g., VDM;

Markiewicz et al 1990; Dorfi 1991) that dissipation of Alfv6n waves within the plasma is

in h_cal equilibrium with the energy input from the CR; i.e., so that thefirst and last

righthand terms in equation [2.12] cancel. Then

L = -ff.w" VPc. (3.2)

I will label this case "LE" (for local equilibrihm) in Table 1. Note for this model that

if c_ = 0 initially, dEw�dr = O, and a = 0 at all times. The second obvious, idealized

alternative is to ignore Alfv_n wave dissipation altogether, so that L --- 0, which I designate

by "L0".

For the streaming velocity, ffw I consider three simple models. Two of these assume

1_7,.1 = v A. The first, following McKenzle & VSlk 1982 and VDM, everywhere sets

,,, = v A >_ 0 ( I designate this by "MV"), while the second sets the sign of ffw at a given

location so that ffw" VPc < O. (This is designated "UA" in the model descriptors in Table

1.) Both of these models imply that Alfv_n waves propagate locally in only one direction, so

that the wave field is "fully anisotropie". The first model, MV, assumes that everywhere

Alfv6n waves propagate upstream. In front of the shock that is clearly anticipated by

the argument that CR streaming upstream from the shock will amplify Alfv_n waves

propagating in the same direction. Downstream of the shock this expectation comes from

the realization, both theoretically and observationally, that Alfv6n waves generated by

ions streaming upstream of parallel shocks in the heliosphere are swept back through

thc_se shocks and provide a fairly wide region of postshock MHD turbulence (e.g. , Quest

19s8, Greensta.dt 1985). On the other hand, for waves interacting with the more energetic

l_articles of interest here this is a less obvious outcome, especially during time intervals

that Pc is peaked around the shock. Then the same wave growth arguments used upstream

should generate Alfv_n waves propagating downstream behind the shock and damp waves

iu this region that propagate upstream. Wave fields reflecting that last property are

represented most simply in the transport model UA.

The third flu, model is introduced to explore the possible importance of smooth vari-

ations in Alfvdn wave isotropy within the flow, but away from the gas subshoek, and

t_, l_'rhaps account more realistically for the competition between upstream facing and

ct,,wastremn facing waves in the postshoek flow. This model assumes isotropic Alfv_n
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waves upstream of the shock precursor, i.e., Ew+ = Ew-, so that Uw = 0. But, in re-

sponse to the streaming CR in the shock structure, Ew+ evolve differently to reflect their

different responses to the CR; in particular, one of Ew+ should be amplified, while the

_ther is damped. Thus we will expect Uw to grow within the precursor. Equations [2.11,

2.12] provide the means to determine d(Ew+ - Ew-)/dt and duw/dt. In general this will

lw complex and nonlinear, however. For present purposes it should be sufficient to adopt

a t)ehavior for Uw that is qualitatively similar to what we might expect in a more detailed

treatment. To construct such a simple model for Uw I note that in the upstream region

where Ew+ ._ Ew- and the rate of compression is still small, we have

d( Ew+ - Ew- )
 Pc, (3.3)

dt

provided L+ _ L_. Under these circumstances Uw o¢ (Ew+ - Ew-)/(aEB) exhibits linear

growth. As the wave field anisotropy grows, however, Uw must become limited to v A. The

simplest model for Uw that has these qualities is

du____w= 1 (t:VA _ Uw) (3.4)
dt 7-

whenever [_TPc[ > 0, or in practice when this gradient exceeds values produced by nu-

merical round-off. The solution for Uw in equation [3.4] exponentially approaches +VA,

of course. The lower sign in equation [3.4] is meant to be applied within the postshock

flow, where X7P c >_ O. Direct translation of equation [3.3] would give (see also Bell 1978,

equation I20])

aE B a pc2s

T _ t d ._4A Pc ,_ tdl_IA-_c, (3.5)

where :¥I A = Us/V A is the Alfvdnic Mach number of the shock. For the model parameters

I have used 7" --_ few × t d. The advection time through the shock is of the order td, also.

Although r should vary in relation to td, it is sufficient for our immediate exploratory

purposes to set Tit d to a constant of order unity. For the simulations discussed here, I

arbitrarily set v = 3t d. In Table 1 I will designate this class of transport model by "UE".

I emphasize that the most important feature of this transport model is that Uw evolves

smoothly towards the locally appropriate limit in response to VPc.

In several simulations of CR acceleration in supernova remnants (Markiewicz et al

1990, Dorfi 1991) Alfv6n transport was modeled exclusively in terms of the effects of wave

energy dissipation; i.e., terms resembling ]ffw" _Pc] were incorporated into the gas energy

equation (equation [2.2]) and the CR energy equation, (equation [2.8]). Thus, as a final

transport model, designated "D" in Table 1, I follow the same approach and drop all Alfv_n

a(lvection terms and keep only the dissipative ones. The resulting calculations accounted

for the exccss generation of gas entropy within a shock precursor as a consequence of

Alfv6n wave damping. Markiewicz et el (1990) and Dorfi (1991) demonstrated that this

can significantly change the evolution of a supernova, remnant shock by increasing the

l_,_stshock gas pressure and simultaneously decreasing the postshock CR pressure. Note

rhnt the two dissipative terms cancel in the total energy conservation equation [2.13], so this

fcnnmlism appears at first to be internally consistent. However, it neglects the additional
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flux term V. ffw'TcEcin equation [2.8], which representsthe fact that CR enthalpy is
not advected at the samespeedas the gas. Since that relative streaming changesacross
the shock in most circumstances,it also can be a very significant effect, and should be
included for physical consistency(see,equation [2.13]). I note also that Markiewicz et al

(1990) ignored Alfvdn dissipative terms in the postshock region as one would expect for

uniform conditions in an equilibrium shock, or when Uw - O. However, since unsteady

shocks will generally not offer uniform Pc downstream, and since the resulting gradients

may generate streaming Alfv_n waves, I will in model D include Alfvdn dissipation on both

sides of the shock, whenever VPc is nonvanishing.

4. NUMERICAL RESULTS

Table 1 summarizes a sample of Alfvdn transport model shocks whose evolution I have

c,mlputed and will describe below. Columns 1 and 2 list the model number and the model

type (§3b), column 3 gives the initial gas Mach number of the shock, M, while columns 4

and 5 list the magnetic field and Alfv_n wave energy parameters,/5 and a. In addition to

the models explicitly listed in Table 1, I have carried out for each value of M a comparison

calculation in which/3 --* co; i.e. in which Alfvdn transport is absent. Those models are,

the,'efore, similar to ones discussed in JK90, and provide the means to establish the net

consequences of Alfvdn transport effects. I term these the "control" models, and refer to

them specifically in the discussion as Models 3c, 6c and 7c. For most of the simulations

discussed a uniform spatial resolution, Ax = 0.0146, was used; for Model 10 (M = 30)

Ax = 0.0098. Except for Models 7 and 8, the spatial interval was [0, 120]. In those two

models (M = 3) it was [0,60]. The initial discontinuity was placed at x = 9.375 to be far

enough away from the two boundaries, so that VPc = 0 there at all times. Simulations

were carried out from t = 0 until t = 110 (tit d _ 700), except for Models 7 and 8, for

which the final t = 30 (t/td _ 200). This was long enough foi" most of the simulations to

approach a steady state in the region within and immediately behind the shock.

a) Test:s

Since we need to compare a variety of subtle effects it is important to understand

the accuracy of the numerical results. I have explored this in several ways. The first

was to perform a simple test for convergence to a final steady state in each model. In

a steady state the upstream and downstream mass fluxes (pu) and momentum fluxes

(Im_ + P:I + Pc + Pw) measured in the shock frame should be conserved. (Of course,

the time dependent versions of these conservation laws are always exactly satisfied in the

computations.) It. is not possible to determine the exact final shock speed or Mach number

_. priori, because it depends upon Pc in the shock structure, which, itself depends on the

shock speed. Thus, assuming the constancy of mass flux to define a suitable shock speed,
I tested the second conservation law. At the end of each control model simulation and

most of the others I found that the upstream and downstream momentum fluxes agreed

_o within about 1 - 2 _. using the resolutions listed above. This, therefore, represents an

al_pr(_ximate estimate of our ability to discriminate effects on individual componentsto the

mcm_m_tmn flux in the asymptotic limit. As a second step I tested the final convergence of
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the control models to exact steady solutions as defined in Drury & VSlk (1981) and Kang

& Jones (1990). In each case I found exact steady solutions whose densities, velocities and

nmmentum fluxes in the shock frame all agree to within about 2% of the final numerically

determined states using the resolutions listed above. The individual asymptotic postshock

values of Pc and Pg are likewise consistent, with an accuracy ,-- 2% in terms of the total

momentum flux. Previously we have established (JK90) that convergence for CR shocks

as measured above is limited by the degree to which the shock precursor (width ,,_ zd) is

r_'_(_lved in the computation. The numerical resolutions above correspond to xd/Az _ 16

i,n(l 24. similar to values we have incorporated in our earlier work.

To test specifically for convergence to accurate solutions including Alfv6n transport, I

computed one model whose exact steady solution was given by VDM. This is Model 1 in

nay Table 1, and its steady solution can be found by using Figure 1 in VDM. To make the

comparison properly one must first convert the gas Math number used here (M = 10) to

the generalized Math number used by VDM. That can be done with their equation [B8]

afr('r correcting an obvious typo. In their units the Mach number is 5.9. Figure 1 here

._h(_ws the comparison with values estimated from their graph. The agreement between the

fim_l m_mericM postshock state and the VDM solution is comparable to the measures cited

above. As a final code test I have carried out the computation of several of the models in

Table 1 with both of the resolutions listed above and found them to differ at all times and

locations by much less than the uncertainties defined through the other tests described.

Thus, in summary, I feel confident that the solutions being presented are accurate to the

level of a couple of percent or better of the bulk flow properties.

b) Alfv_n Transport Results

Some of the general consequences of Alfv_n transport can be seen by examining Figure

"2. which displays structures near the end of the simulations of Models 2-4 (all with

M = 10, d = 1 and a = 0). The 3,I = 10 control, Model, 3c, is also shown at a somewhat

earlier time, but still in a converged state. The qualitative time histories of all the models

are similar to those described in JKg0 and Kang & Jones (1991), so I will concentrate here

on their differences. Two important things are immediately clear from the figure. First,

Alfv_n transport in each of Models 2-4 has an important effect on the final as well as the

intermediate shock structures. (Those intermediate properties are preserved in the flow

l_rofiles shown.) In each case it has reduced Pc below levels seen in the control Model

3c. and has left the postshock gas hotter. For these parameters the gas subshock is still

present, but considerably weakened in the control model. In all the models incorporating

Alfx'_.hl transport, the gas subshock is strong, even approaching the original strength in

one case (Model 3). The second point is, however, that the impact of Alfv_n transport

d_'pends strongly upon the details of how it is modeled. This is obvious in the Pc and Pg

_w(;files in the figure. In addition, since Pc softens the equation of state of the fluid in the

shock relative to that from Pg alone, the differing postshock values of Pc result in slight

variations in the shock speed as well as more significant differences in the postshock gas

d_'nsitv. The large overcompressed density features visible in Models 3c and 2 are absent in

._lodels 3 and 4. That is due directly to their smaller Pc, as discussed previously (JK90).
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Model 2 is basedon the Alfv6n transport modeldescribedin VDM. Among the models
shownin Figure 2 it producesthe least changein CR accelerationefficiencycompared to
the control model; i.e., it generatesthe greatestpostshockPc, next to the control model.

Model 3 produces the most change; the smallest Pc and largest Pg. Models 2 and 3 differ in

only one detail of the Alfv6n transport downstream of the gas subshock, yet the asymptotic

post, shock values of Pc differ by a factor _ 7. The distinction between the models is the

direction assumed for ffw in the postshock flow, as illustrated in the lower left portion of

Figure 2. Both models assume that Iffu, I = v.4; however, Model 2 assumes that ffw always

points upstream, whereas Model 3 reverses ffw to point downstream in the postsho_.ck flow,

as discussed in §3b. Two important changes result from this distinction. First, ffw'VPe > 0

in the postshock flow of Model 2 when Pc is building up. Then since Model 2 uses equation

[3.2] to define the rate of Alfv6n wave dissipation and consequent nonadiabatic gas heating

outside the subshock, L _< 0 in the postshock flow; i.e., heat is removed from the gas and

put into the CR. That particular feature of Model 2 is unphysical. But, even though it
would seem to be irrelevant once the shock has reached a steady state with a uniform

d<_wnstream condition, it does play a role in getting to the steady state.

The second distinction between Models 2 and 3 is more important and does remain a

factor even in the steady state. This is the fact that the Alfv6n wave advec_ion through

the fluid as re:_resented by ffw changes the rate at which compression in the gas flow does
work on the CR. That is related to the rate at which individual particles are accelerated

as they scatter back and forth across the shock. In all the models discussed in this paper
this rate is slower because of Alfv6n wave advection, but the amount of change depends

upon how uw varies within the flow. In general the effects will be greater whenever M
and _ are smaller. \Ve can evaluate this behavior simply using the formula for the mean

time interval for a particle to be accelerated to some momentum p + dp from an initial

m_m_'ntmn p (Lagage $: Cesarsky 1983, Drury 1983),

+
dr= fL1 - fz2 p"

The mean particle acceleration rate --. dp/dt. In this equation the subscripts 1 and 2 refer

tc, the upstream and downstream values of the diffusion coefficient, n, and the net advection

speed, fi = u+uw, as measured in the shock frame. The interval dt in equation [4.1] includes

two velocity dependent effects, isolated by brackets. The first is the momentum change

produced by a single reflection through the shock, 8p cx fil - fi2. Alfv6n wave advection

will ahvays diminish @, no matter what the direction of ffw, provided ]Uwll > ]Uw2].

This factc_r ahvays tends to increase dr, therefore. The remaining part of dt comes from

Ill(" mean residence time of a particle on each side of the shock, trl,2 Cx: 1¢t,2/1_1,2. The

r_'sidence time on the upstream side of the shock, trl , will always be increased, compared

t(> a case without Alfv6n transport by upstream directed Alfv_n advection. It is the

relative downstream residence time, tr2, that most distinguishes Models 2 and 3, since it

is decreased in Model 2 but increased in Model 3. However, for the models discussed here,

frl > tr2, SO that in net dt is always increased by these changes. From this example we

can see that the properties of Alfv_n transport behind the shock are important to the rate

,,f C12 acceleration in the shock.
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Models 3 and 4 allow us to see directly the relative roles of Alfv6n wave dissipation and

advection in diminishing CR acceleration. Model 4 differs from Model 3 only in having the

Alfv6n advection terms turned off. As discussed in §3b, this model resembles those used

in some previous efforts to include Alfv6n transport in models of supernova remnant CR

acceleration. The simplification made reduces significantly the impact of Alfv6n transport

in this case. Model 4 has not quite reached a steady state at the end of the simulation,

lint. even so, it has generated a postshock Pc that is already _ 3.5 times greater than

that in Model 3. The reasons for the difference are simply related to the fact that the

,.limination of Alf_'e'n advection in Model 4 causes dt in equation [4.1] to be smaller in

Xlodel 4 than in Model 3. It is conceivable, of course, that nonlinear processes in the

postshock flow might produce a more nearly isotropic Alfv_n wave distribution, thereby

reducing or eliminating postshock Alfv_n advection. Then Model 4 would be a crude

approximation to the expected behavior, although it would still overestimate the rate of

particle acceleration, because it also ignores upstream Alfv_n advection. In any case, it is

clear that we must properly include the advective terms in Alfv_n transport for an accurate

model.

Model 5 is a simple attempt to illustrate the potential significance of a related detail;

namely, the smooth spatial and temporal evolution of ffw through the full shock structure.

As outlined in §3b, Model 5 allows luwl to evolve relative to v A in response to gradients

in Pc. It is zero upstream of the shock, representing an assumed isotropy of the waves in

that region. The resulting behavior can be compared to that of Model 3 using Figure 3.

For Model 5 the Alfv6n transport terms are effectively turned off upstream of the shock

precursor. Furthermore, the sign change in uw which is at the gas shock in Model 3 is

delayed behind the shock whlie the relative balance of forward rate and reverse propagating

Alfv6n waves responds to damping and growth by the CR (see Figure 3). As we would

anticipate from these features and what has already been stated, Model 5 is significantly

more efficient in CR acceleration than Model 3. Since Model 5 has not yet reached an

_'quilibrium we cannot say with certainty how large the time asymptotic Pc will be. At

the end of the simulation it is still much smaller than the final value for Model 2, but iL is

l_lausible that Model 5 could ultimately approach this level of efficiency, albeit much later

t,han Model 2. That suggestion follows from the recognition that in one important respect

the Alfv6n transport in Model 5 has begun to approach that in Model 2. By examining the

evolution of Uw one can see that the region behind the subshock within which uw > 0 has

extended with time. In a more realistic model, the rate of change in Uw would depend on

the size of VPc, which has diminished with time, as well. That should cause the sign change

in uw to be further delayed downstream. Once the region with Uw > 0 extends more than a

length -._ _/u2 downstream from the shock, Models 2 and 5 should be qualitatively similar

in terms of their Alfv_n transport properties. An additional, curious feature of Model 5

comes fi'om the fact that Uw develops finite values within the precursor in response to

finite VPc. This results in a nonlinear effect that causes the tip of the precursor in to

extend forward at an enhanced rate, producing a kind of "toe", just visible in Pc in the

figure. The foreshock region is consequently somewhat broader at its base than it would

be otherwise.
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So far we have examined only shocks of nominal Mach number 10. It has long

been known that the efficiency of diffusive shock acceleration and the degree of shock

modification due to back reaction from the CR depend upon the Mach number of the

shocks involved (e.g., Axford, Leer & S'l'l'lmdron i977; Blandford 1980; Drury & VSlk

1981). In general acceleration emciency is highest and shock modification is greatest when

the Mach number is high, at least in the time asymptotic limit. But, Alfv6n transport

complicates this issue, since it is itself nonlinear. The VDM model of Alfv6n transport

has a relatively modest effect on acceleration efficiency at both small and very large Mach

numbers (see Figure 1 in VDM). The VDM Alfv6n transport model has its greatest impact

in moderately strong shocks, such as those already discussed. Our results already described

confirm theirs, that at intermediate Mach number, Alfv6n transport can be generally quite

important. But, since the degree of change was so model dependent, it may be useful

to compare the VDM results at greater and lesser Mach numbers to the behavior using

other Alfv6n transport models before drawing conclusions for shocks of different strengths.

Figures 4 and 5 allow us to do this for cases M - 30 and M = 3 using the same Alfv6n

transport model as in the Mach 10 Model 3, discussed previously.

Figure 4, compares the evolution of two M = 30 shocks (Model 6 and the control,

Model 6c). As emphasized earlier, diffusive shock acceleration models that do not in-

c()rl)orate Alfv6n transport can be so emcient at transferring energy to CR in the time

asymptotic limit that they completely smooth out the shock transition (eliminate the en-

tropy producing gas subshock) at high Mach numbers. That does indeed happen in the

control model shown in the figure. Such a development would have quite a significant

impact on the observed properties of the gas in the postshock flow, since the gas will be

significantly colder. The fact that X-rays are observed from behind supernova shocks, thus

providing proof that these shocks are not smoothed out, has sometimes been cited as an

indication that the theory of diffusive shock acceleration may overestimate real efficiencies.

There are several ways that this issue can be ameliorated, including not assuming a steady

state (see, e.g. Jones _: Kang 1992a). But, as pointed out by VDM, one of the potentially

mo._t important consequences of Alfv6n transport is that, by reducing the efficiency of

C1R acceleration in strong shocks, it might delay to much higher Mach number potential

(l('velopment of the smoothed out transition. That expectation is certainly borne out in

.Nlodel 6, shown here. In fact the gas shock has retained almost its original strength even

at Mach 30, with a postshock pressure ratio, Pg/Pc > 10. This is once again a significantly

greater diminution of the CR acceleration efficiency than with the VDM transport model.

They estimated with their model for "to = 4/3 and N = 1/2 that Alfv6n transport would

extend the range of gas Mach numbers for which subshocks are expected to ,._ 50 (or ,_ 30

in their Mach units) when fl = 1. The result shown here supports that suggestion.

On the other end of the Mach scale, Figure 5 illustrates the time evolution of the

:lI = 3, Model 7 shock, which once again uses the same Alfv_n transport as in Model 3.

The Mach 3 control, Model 7c is also shown, along with the ending state for the analogous

Model 8 which uses an intermediate fl = 10. It is clear that the Alfvfin transport effects

are quite significant even at Mach 3 in this case. The asymptotic postshock value of Pc

is decreased in Model 7 relative to Model 7c by a factor of _ 4.2. That impact of Alfv_n

transport appears to be much greater than in the VDM model, because, once again Alfvfin
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wave a.dvectionbehind the shockinfluencesthe rate of particle acceleration. The potential
importance of that advectiveeffect and sensitivity of results to the way Alfvdn advection
is modeled will becomegreater asthe differencebetweenv A and the postshock gas speed,

u2, diminishes. It is straightforward to show in the absence of CR modification to the flow

Vfi that the ratio VA/U 2 = + 1)/{[(7 - 1)M _ + 2] 3} which is a monotonically decreasing

function of M. Note, however, that so long as/3 :> 1 and M > 1, then VA/U 2 < 1, so that

we avoid such complicating developments as "swltch-on" shocks, wherein the postshock

flow develops a large scale magnetic field component tangent to the shock face. The ending

.state of Model 8 with /3 = 10 is shown to demonstrate that at such low Mach numbers

Alh'&l transport can still be significant, even when the magnetic field is not all that strong.

The ending Pc in Model 8 is still only about 2/3 the asymptotic value in Model 7c. An

analogous comparison between the Mach 10 control Model 3c and a like example with

:_ = 10, produces less than 20% difference in the final, asymptotic Pc.

Finally, Figure 6 illustrates the evolution of two M = 10,/3 = 1 models (Models 9 and

10) for which the finite Alfvdn wave energy, Ew, has been explicitly accounted for in the

dynamics. In particular, they represent cases in which _ = 1. Model 9 is identical to Model

3. except for that feature. A comparison between the evolution of those two models (using

Figures 3 and 6, for example) shows that in this case, at least, the addition of the wave

energy has little impact on the behavior. The forces resulting from Pw are never very large

compared to the dominant terms, so this is not very surprising. Even though the nonlinear

processes which might limit Ew are not well established, there should be general agreement

that c_ = 1 is a conservative upper limit to what might be expected. In fact, since the

downstream Ew/E B is increased, this is perhaps too large to be entirely consistent with

the spirit of the models. Thus, for parallel shocks with /3 >_ 1, at least, it seems that

the Alfv6.n wave energy should not be directly important to the dynamics. We assumed

above a local equilibrium in wave energy gains from CR and dissipation in the gas. So Ew

does not increase substantially above levels based on adiabatic compression used as initial

conditions. Because a local equilibrium ("LE") may not be wholly realistic, one might

reasonably ask how sensitive the previous behavior was to that assumption. Model 10, also

shown in the figure, may provide a partial answer to that question, since it is identical to

5lodel 9 except it assumes there is no wave dissipation; i.e., that L = 0. This clearly makes

quite a difference, since Pc is still growing almost linearly in time even at the end of that

simulation and is considerably greater than the equilibrium value in Model 9. However,

the effect on the wave growth itself is less dramatic, since it is only -,- 20% larger at the end
of the simulation than it was in Model 9. Most of the difference in the two outcomes must

be due to the fact that the gas remains colder in Model 10 and compression is greater, so

that energy gains by particles crossing the subshock are greater. Note that in Model 10

Alfv6n advection remains in effect and that ffw" _Pc remains in place in equation [2.8],

so that only the gas and wave energy equations have been influenced. The influence of

.-klfvdn advection may account for the greater time scale apparently required for the shock

in Model 10 to approach an equilibrium. That is, as discussed earlier, particle residence

times on each side of the subshock are extended by Alfv4n advection. It is clear from this

example that the details of the wave damping model can be important, even if the wave

energy content itself is not large enough to impact directly on the flows.
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5. SUMMARY

This paperhasexploredthe time evolution of plane,cosmlc-raymodified parallelshocks
basedon the diffusive shockacceleration formalism and including the effects from the finite

propagation speed and energy of Alfv_n waves responsible for controlling the transport of

tile cosmic-rays. The numerical simulations discussed are based on a three-fluid model for

the dynamics. The results of the simulations confirm earlier, steady state analyses that

found these Alfv_n transport effects to be potentially important when the upstream Alfv_n

speed and gas sound speed are comparable. It is also apparent, however, that the impact

of Alfv_n transport effects under such conditions, which tend to slow shock evolution and

reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon

details of the transport. It is clear that both cosmic-ray advection tied to streaming Alfve_n

waves and dissipation of wave energy are important to include in the models. It was obvious

from the start, of course, that Alfv_n transport should not play a very important role if

the magnetic field is weak in the sense that the Alfv_n speed is negligible. However, what

constitutes a negligible Alfv_n speed in terms of the gas sound speed or the shock speed

also seems to depend significantly on the transport characteristics.

The influence of Alfv_n transport depends upon both direct advection through the

underlying plasma brought about by streaming of Alfv_n waves and by the dissipation

of the wave energy generated through the resonant scattering between waves and cosmic-

rays. Alfv_n advection, used here to refer to the direct transport of cosmic rays in the

"center of momentum" frame of the Alfv_n waves is important, because, by changing the

relative speeds of the "mirrors" across the shock, it alters the energy gained each time

a particle crosses the shock. In addition Alfv4n advection can extend or decrease the

characteristic time spent by an energetic particle before it returns across the shock, thus

filrther modifying the rate of acceleration. Wave dissipation is important not only because

it represents direct energy removal from the cosmic rays, but also because it can influence

the compression in the shock, and thus the energy gain by a particle in each shock crossing.

Although the general consequences of Alfvdn transport are to slow down the rate

c_f cosmic ray acceleration and to reduce the available efficiency of the process, how

sigHiflcant the effects are is rather sensitive to a number of details, currently not well

understood, about the generation, propagation and dissipation of the Alfv4n waves in these

environments. Depending upon these details it would appear under some circumstances

that A1Ddn transport can dramatically retard and/or reduce the efficiency of diffusive

shock acceleration. But relatively simple changes in the Alfvdn transport characteristics

can considerably alter the predicted acceleration efficiency. These statements refer both to

the time asymptotic state of the shock and to its intermediate structures. The simulations

reported here demonstrate, for example, that the variation of the streaming motion of the

Alfv&_ waves through the shock structure can be very important and influence such basic

matters as the net efficiency of acceleration at a given time, the time necessary to reach

an equilibrium and the range of Mach numbers over which one might expect eventually

to have the shock structure smoothed out by back reaction of the cosmic rays. Along the

same lines, it is clear from these calculations that the properties of Alfv4n transport on
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both sides of the shock transition should be carefully considered in evaluating its influence
on diffusive shock acceleration.

These calculations were intended primarily to help establish directions for developing

more complete treatments of Alfv_n transport in diffusive acceleration shock models. They

are still very idealized and clearly do not provide a full picture of the problem. The results

do indicate that one must carefully consider the details of such models, and that further

efforts are needed to refine our physical understanding of Alfv_n transport. It is also

clear that before we can be at all confident we understand what role, if any of practical

imlmrtance, Alfv_n transport plays in real astrophysical shocks, we must extend such

treatments as this one to include full MHD as well as momentum dependent aspects of

the problem. The structures of oblique MHD shocks can be more complicated than those

considered here, especially when the magnetic fields are strong. Further, in an oblique field

geometry the Alfv_n advection, which is along the field lines, will not transport cosmic

raw so rapidly with respect to the shock boundary. Other important, field related details

of acceleration physics may also enter the picture (e.g. , Jokipii 1992). In a two-fluid

or three-fluid model, we cannot consider such effects as the different rates of scattering

and wave growth appropriate to different momentum ranges of the particles. Since the

scattering rates and wave growth rates may reasonably be slower for large momenta, this

could mean, for example, that for the high energy particles that are directly observed,

AlfvSn transport effects are diminished relative to those for the lower energy particles that

ar_ most likely to become involved in nonlinear back reaction on the shock flow.
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TABLE 1

Alfv6n Transport Model Shock Properties 1

Model Transport Properties 2 M
1 LE-MV 10
2 LE-MV 10
3 LE-UA 10
4 LE-UA-D 10
5 LE-UE 10
6 LE-UA 30

7 LE-UA 3

8 LE-UA 3
9 LE-UA 10

10 L0-UA 10

s/6 o.
1 O.
1 O.
1 O.
1 O.
1 O.
1 O.
I0 O.
1 1
1 1

1 All models have N = 1/2 and "fg = 5/3.

All models except model 1 have .,'c = 1.4. For model 1 7c = 4/3.

2 See §3b.
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FIGURE CAPTIONS

Fig. 1.-- Evolution of a plane cosmic-ray modified shock including Alfvdn transport

effects according to a transport model by VSlk, Drury and McKenzie (1984) and

described here in §3b. Shock properties are listed as Model 1 in Table 1. The solid

curves, representing gas density, pressure and velocity along with the cosmic ray

pressure are structures numerically determined from time dependent techniques

described in the text and shown at times t = 0, 50,110. For all models in all figures

the characteristic diffusion time is t d = _/u 2 = 0.156. The dashed lines are values

t,aken from the exact steady state solution for this shock as given in Figure 1 of

\'61k, etal..

Fig. 2.-- Ending cosmic-ray modified shock structures for Models 2, 3 and 4 as de-

scribed in the text and listed in Table 1. The control Model 3c, without Alfv6n

transport effects, is also shown. Models are labeled in the upper right panel. Struc-

tures for Models 2, 3 and 4 are shown at t = 100, while Model 3c is shown at t = 70.

uw is the mean drift speed of the Alfv6n waves through the background plasma.

The solid curves represent initial conditions (t = 0) for the models. The small cusps

in the density profiles in this and the other figures occur in the Lagrangian sense

at the original shock location and result from the nonequilibrium nature of the as-

sumed shock initial conditions.

Fig. 3. - Computed shock structures for Models 3 (solid) and 5 (dotted) from Table 1.

Structures are shown at t = 0:30,60,90.

Fig. 4.-- Shock structures for Models 6 (dotted) and 6c (solid) at times t = 0, 30, 60, 90.
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Fig. 5.-- Shockstructures for Models7 (solid) and 7c (dotted) at times t = 0, 10, 20, 30.

Also shown is the structure of Model 8 (dashed) at t = 30.

Fig. 6.-- Shock structures for Models 9 (dotted) and 10 (solid) at t = 0, 30, 60, 90.
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